ARCHITECTURE FOR AUTOMATION AND TELEPRESENCE IN A MARINE HATCHERY LABORATORY

Jo Arve Alfredsen¹, Morten Omholt Alver^{1,2}, Tor-Inge Eriksen¹

- 1. NTNU, Department of Engineering Cybernetics
- 2. SINTEF Fisheries & Aquaculture

Outline

- Background automation and marine larval and juvenile production
- The CodTech marine hatchery automation laboratory
- Development of an infrastructure for automation and telepresence in CodTech
- Lessons learned

Larviculture: A process-oriented perspective

Production consists of a set of processes that are:

- dynamic
- interdependent
- asynchronous
- required to operate within certain limits and at certain rates

Production goals:

- Maximize fry quality
- Maximize capacity
- Maximize robustness
- Minimize costs
- ++

- + Water management system
- + Climate control system
- + Hygiene and cleaning system

Controlling the production system optimally is a complex task.

What tools are there to help us?

Automation

The collective use of machines, sensors, computers, ICT and automatic control to optimize capacity, quality, robustness and costs of a production process

- Automation is generic and one of modern society's "enabling technologies"
- Marine hatcheries should benefit from the lessons learned in other industries • where automation is well established
- Traditional view of just saving labour costs is too narrow and must be ۲ abandoned
 - Accuracy and consistency in operations \rightarrow quality and robustness
 - New modes of operation that are impossible to implement with manual labour
- Automation required to achieve productivity and quality goals when scaling up and industrializing marine hatcheries

Automation tools

Challenges

Nevertheless, "larviculture specialities" must be kept in mind:

- Complicated biological processes
 - Process knowledge sometimes limited
- Product is live organisms
 - Careful handling, ethical issues
- Special instrumentation needs
 - Can it be measured in a practical way?
- Challenging environment
 - Delicate electronic equipment in a wet and corrosive environment

7

CodTech Marine hatchery automation laboratory

- Research on larval production protocols
- Initially designed for cod larvae production
- Test-bed for hatchery automation technology

CodTech, NTNU Centre for Fisheries and Aquaculture

Laboratory sections

- Start feeding
 - 18 larval tanks
 - Robotic feeding
- Live feed production
 - 12 production tanks
 - Rotifers, Artemia, copepods, algae
- Water supply system
 - SW, fresh
 - Raw, matured, recirculated

First feeding section

- 18 tanks, V = 160 liters
- Feeding robot
 - 3 live feed silos, 2 dry feed silos
 - Automatic refill station
 - Feeding tables or feedback controlled appetite feeding
- Automatic live feed counting and logging
- Automatic live feed density control
- Water quality and flow monitoring and control
- Lighting control
- In-tank video cameras
- Lab floor video camera
- Network access

Integration issues

- System comprises a diverse set of equipment with:
 - different user interfaces
 - different communication interfaces
 - different modes of operation
- \rightarrow No common point of entry
- → Communication between subsystems difficult
- \rightarrow Confusing and inaccessible for the operator
- → Higher risk of doing errors

Solution for "gluing" subsystems together to form one coherent and user-friendly system needed

CodTech automation solution

- Based on Proview open process control system
- Modular design
 - Development station
 - Process station
 - Operator station (HMI)
 - Storage station
- Open and extensible
- Flexible integration of many types of instrumentation
- Free...

Remote access

- Networked computers monitor and control an increasing number of laboratory tasks
- Makes remote access to laboratory resources over the Internet possible:
 - Real-time data always available
 - Closer follow-up of experiments
 - Adds flexibility to management of experiments
 - Telepresence
- \rightarrow However, **security** needs to be handled carefully

- CodTech is part of the EU FP7 Capacities project AQUAEXCEL (Aquaculture infrastructures for excellence in European fish research, <u>www.aquaexcel.eu</u>)
- Supports transnational access to facility for guest researchers
- System for remote access and telepresence in CodTech facility under development to facilitate remote users
 - certain aspects of experiments may be followed up from "home"
 - remote real-time and historical data monitoring
 - visual feedback from the lab floor, from robot and inside tanks
 - use the feeding robot to "move around in the lab doing things"

Architecture for remote access

Network security provided by:

- Physically isolating the automation network
- Forcing all access through a dedicated security appliance
- VPN login and firewall mechanisms
- Introducing user categories and privilege levels
 - Administrator
 - Privileged
 - Guest user

Science and Technology

Some lessons learned

- Designing an automation system ad hoc may lead to integration issues as it grows in size and when more advanced functions need to be implemented
 - You will eventually need a solution for tying everything together
 - Good solutions available, but design needs careful planning
- Requirements to the automation system can generally be divided in two categories
 - Standard requirements \rightarrow solved by "of-the-shelf" components
 - Process-unique requirements → purpose-built instrumentation and control systems must be developed and commercialized
- The latter category demands
 - Resources to R&D
 - A strong and competent industry
 - Cross-disciplinary cooperation between biologists and engineers

Thank you for your attention

